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INTRODUCTION

For N a fixed positive integer, we denote by 4 a compact metric space
which contains at least NV distinct points; the symbol |x — y| will denote the
distance between two points, x, y € 4. For every bounded complex-valued
function, g, defined on 4, the norm of g is given by ||gll = sup,e4 | 2(x)| (where
|g(x)| denotes the absolute value of the complex number g(x)). For M a
positive real number, we denote by F(= F(M)) a nonempty class of complex-
valued functions defined on 4, such that if /¢ F, then || f || < M. Further, we
let gi(x) (k=1,...,N) be a Chebychev system of continuous complex-valued
functions defined on 4, i.e., for any choice of complex numbers A, ..., Ay
Ci-i A > 0), the function > ; Aq(x) vanishes at at most N — 1 distinct
points of A. This means that, given N distinct points x; € 4 (I <i< N), and
N complex numbers z; (1 <i< N), there exists a unique set of complex
numbers A, (I <k < N) such that the function >%_; Aq(x) takes on the
value z; at x; (1 <i<N); Le., o Magilx) =z, (1 <i<N) (see, e.g., [1,
p. 24]). We denote by P the class of all linear combinations of gy, ..., gy,
i.e., P consists of exactly those functions which are of the form > ; Agu(x),
x € 4, & complex numbers (1 <k < N).

The purpose of this paper is to investigate the uniqueness of an element
q € P which satisfies the equation

inf suplip — fll = supllg — f{i.
peP feF FEF

We think of ¢ as being an element of P which best approximates the family F.
Special cases of this problem were investigated by Tonelli [2] and later by
Kolmogorov [3]. In Kolmogorov’s problem, F consisted of one continuous
complex-valued function, defined on a compact set which contained at least
N + 1 distinct points. And in Tonelli’s problem, F consisted of one continuous
complex-valued function, defined on a compact subsét of the complex plane,
with gi(x) = x*! (1 <k < N), x complex. More recently, Dunham [4] studied
the problem, under the assumption that P was a family of real-valued func-
tions, unisolvent of degree N, on a compact interval of the real line. He
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420 DIAZ AND MCLAUGHLIN

considered the cases: (i) F consists of one bounded real-valued function,
(ii) F consists of an upper semicontinuous real-valued function, f*, and a
lower semicontinnous real-valued function, f—, with f* > f~ pointwise, and
(iii) F consists of a finite number of continuous real-valued functions.

In Section 1 we treat the problem of existence of an element of P which best
approximates F. In Section 2 we state a uniqueness theorem, which is the
main theorem of the paper. The approach we have taken hinges on Lemma 1.3.
The idea expressed in this lemma was contained in a private communication
to J. B. Diaz, from P. Frederickson, dated September 1, 1968. Finally, in
Section 3 we investigate special cases of the theorems of Section 2.

SecTION 1
THEOREM 1.1. There exists an element q € P such that

inf sup [|p fl¥~sup{lq —fl

peP feF
Proof. Since ||f|| < M, one has inf,p Supsepllp —f || < . Let {p,> be a
sequence in P such that

lim [Sup lpn —Sf11— ‘p‘;f, sup lp =f11=0.

n—ce

For each n and every f € F one has

Iall < lpa=FII+ 111 < Supllpn —fl+M

= inf sup|ip — f\\+[supﬂpn f\i—ilgn%flégllp—f\!]ﬂLM-

peP feF

Since the term in brackets tends to zero as » tends to infinity, the sequence
{pn> is uniformly bounded. Thus, {p,> contains a subsequence which con-
verges to an element of P (see, e.g., [1, p. 16]). Without loss, we assume that
there exists an element g € P such that lim,,_, . [|p, — ¢l = 0. Further, for each n,

O<supllg—fli—infsup|p—fl
SfeF peP feF
< sup [|p, —f1l + 1lg — pall] — inf sup{|p — £
JeF pEP feF
= [sup|{p, — f|l —inf sup flp — £} + llg — pal.
JFeF peP feF

Since the term in brackets tends to zero as n approaches infinity, and since
lim,,,, |lg — pall = 0, one concludes that

supllg — f Il =inf sup ||p — fII.
JFeF peP feF

This completes the proof of the theorem.
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Next, we make two definitions. Letting C denote the complex plane, we
define the set-valued functions 4(x) and A*(x) by

Wx)={zeC|f®)=zfeF), xed,
and

a
ro=-n( U i), xe4
e>0 \|x—¥y|<e
where the superscript, 0, denotes closure in C. (As defined above, /* is an
upper semicontinuous set-valued function; see, e.g., [3, p. 1481.)
The next two lemmas are used repeatedly in what follows.

LEMMA 1.1. Let x € A. Then z € h*(x) if and only if there exists a sequence of
ordered pairs {(x,,z,)> such that (1) {x,> < A4, (2) lim,,, %, = x, (3) 2z, € A{x,)
(n=12,...), and (4 lim, 2, =z

Proof. ‘Suppose, first, that a sequence {(x,,z,)> satisfying (1)~(4) exists.
Then for € > 0 there exists a positive integer N such that, for n > N, one has
(@) |x—x,<e and (@) zehlx)<= U ).

[x—yl<e

Thus, since lim,,,_ z, = z, one has

ze( U_)

Jx—y]<e

But e > 0 was arbitrarily chosen, which means that

ze ﬂ( U h(y))oz

€>0 \|x—y[<e
i.e., z € B¥(x).
Conversely, if

ze N (] U h(y))o, thenze( U h(y))o

>0 \|x—y|<e Ix-yl<e

for all € > 0. In particular, for each positive integer »,
0
ze( U, w0
Ix~y|<1l/m
Thus, there exists an ordered pair (x,,z,) such that x,€ 4, |x —x,] < 1/,
zp € h(x,), and |z —z,| < 1/n. Hence, lim,, x,=x and lim,, z,=z. This
completes the proof of Lemma 1.1.
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LeEMMA 1.2. For each x € A, h*(x) = [I*(x)}*; i.e.,

(.Y h(y))°=m( y_ro).  xea

>0 \[x~yl<e €>0 \[x—yi<e

Proof. Since A(y) <= h*(y) for all y € 4, it follows that for all € > 0, one has

(L mo) = y_ro), xe4

Ix—yl<e x-y|<e

and hence

0y i) en( U ro), wea

>0 \Ix—y|<e €e>0 \ |x-yi<e

It remains to show that the inclusion sign can be reversed. Let x € 4 and let

ze ﬂ( U h*(y)>o-

€>0 \[|x—y[<e¢

To show that

0

ze (Y10
e>0 \|x—y|<e

it suffices, by Lemma 1.1, to show that there exists a sequence of ordered pairs

{(%p,2,)> such that (1) x> < A4, 2) lim,, x,=x, 3) z, € h(x,) (n=1,2,...),

and (4) lim,_,.,z, = z.

By Lemma 1.1 there exists a sequence of ordered pairs {(y,,£,)> such that
D <yw =4, D) lim, ., yu=x, (3) fn en*(y)(n=12,...),and (4) Hmn—eoofn:Z-
Since £, € h*(y,) (n=1,2,...), it follows by Lemma 1.1 again that there exists
a sequence of ordered pairs {(x,;,2,;)>; (n=1,2,...) such that (1) <{x,;>;, < 4,
Q) limp X,;=y, n=12,..), B z,;€hlx,;) (n,j=12,..), and (4
lim;,, z,; = ¢, (n=1,2,...). Without loss (by choosing a subsequence and
relabeling, if necessary) we can assume that |y, — X,,| < 1/nand |§, — z,,| < 1/n
(n=1,2,...). Now we define a new sequence of ordered pairs, by (x,,2,) =
s Zn) (m=1,2,...). Then, <{x,> <A, z,€h(x,) (n=1,2,...), and since

|x—xn| < l'x__ynl + |yn_xn],
and
]Z_Zn]<|z—§nl+|fn—znl n=12,..),

it follows that

limx, = x,

n—oo
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and
limz,=z.

>0

This completes the proof of Lemma 1.2.

Remark. We note that if 4 and C are metric spaces and F is a family of
functions from A4 into the set of all subsets of C, then both Lemmas 1.1 and
1.2 remain valid.

Levmma 1.3. If p € P, then

suplp—fli=sup sup |p(x) — 2.

xcd zeh

Proof. Since I*(x) > h(x), x € A, it follows that for each x e 4 and each
feF,onehas

|p(x) —f(x)] < Sg(p)lp(x) -zl < sup |p(x) — 2|

<sup sup |p(x)—z].

xeA4 zeh*(x)

Thus,
sup|ip — £l = sup sup | p(x) — ()|
feF feF xed

<sup sup |p(x)—z|.

xeA zeh*(x)

1t remains to show that the inequality can be reversed. We choose a sequence

of ordered pairs {(x,,z,)> such that x, € 4, z, € i*(x,) (n=1,2,...) and such
that

im | p(x,) — z,| = sup sup [p(x)—z|.

H->C0 x€A zeh*(x)
Since z, € h*(x,) (n=1,2,...), it follows from Lemma 1.1 that there exists a
sequence of ordered pairs (9,,§,) such that (1) <{n,> < A4, 2) |x,— .| <1/n,
B) & eh(n,),and@) |z, — &l < Un(m=1,2,...).Since £, € h(n,) (n=1,2, ...},
there exists an element of F, call it f;, such that f,(z,) = €, (n = 1,2,...). Thus,
forn=1,2, ..., one has

sup | p(x) = £u(0)] = | p(0) = fumd)| = | P () — &4

> [p(nn) - Zn‘ - lgn - Zn§
> lp(xn) "an - lp(xn) —'p("}n)] - !gn'“ Zni:
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and hence

sup lp—fll= sup sup | p(x) — f ()]

> lim sup | p(x) — fu()]

H-500 XE.

> Ig} [ pGen) = za] — [ P(x) — POy — |én — 24]]-

Using the facts that p is uniformly continuous on 4, lim,_,, |x, — 7,/ =0 and
lim,, |€, — z,| =0, one has that

E[Ip(xn) - an - Ip(xn) "‘P(’?n)] - ]gn - Zn“

=lim | p(x,) — z,| = sup sup |p(x) —z|.

n->0 zeh*(x)

This completes the proof of Lemma 1.3.

Remark. We note that Lemma 1.3 remains valid under the assumptions
that A and C are metric spaces, F is a family of functions from A into the set
of all subsets of C, and p(x) is a uniformly continuous function from 4 into C.
Under these hypotheses, one must admit the possibility that the conclusion
of the lemma takes the form < = co.

For p e P, define a set D, <= A4 x Cby

D,={(x,2)eAxClzeh*(x) and |[p(x)—z|= sup lp —fl.

Thus, the set D, may depend upon the choice of p € P. The next lemma asserts
that for each p € P, the corresponding set D, is nonempty.

LemMMA 1.4. Let p € P, and let D, be the corresponding set in A x C, as defined
above. Then D, # & .

Proof. Let x € A. Since h*(x) is compact, there exists a point Z(x) € A*(x)
such that

sup | p(x) = 2| = [p(9) — 2.

zeh*(

Let <x,) be a sequence in A such that
lim | p(oxz) — 2(ea)]| = sup | p(x) — 2(x)]-

Since A is compact, we can assume without loss that lim,_x, = xy € 4.
Since Z(x,) is a bounded sequence in C, we can further assume without loss
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that lim,, ., Z(x,) = zo € C. From Lemmas 1.1 and 1.2, one concludes that
zy € [I*(xg)]* = A*(xy). Further,

0<sup sup |p(x) — 2| — |p(o) — 2]

xed zeh*(x)

= sup |p(x) — 2(x)| — | p(xo) — zo]
= }Lrg Hp(xn) - z(xn)l - ]P(xo) - ZO[}
<lim |(p(,) = pxo)) + (20 = 205)]

< lim | p(x,) — p(xo)| + lim |20 — Z(x,)| =0

>0

(where we have used the continuity of p). One concludes that

Sup sup |p(x) — z| = | p(x0) — zo]-

xed zeh*(x

Using Lemma 1.3, it follows that
|p(x0) — zo| =sup sup |p(x) —z| =suplip—fli;
xed zeh*(x} JeF

i.e., (xg,20) € D,. This completes the proof of Lemma 1.4.

SECTION 2
Theorem 2.1 gives a characterization of an element of P which best approxi-
mates F.

THEOREM 2.1. If g € P is such that
inf supilp — fll=supllg—fli = E,
peP feF feF

then for every p € P there exists an ordered pair (xq,2,) (possibly depending on

P, xo € 4, 2y € h*(xo), such that |g(xo) — zo| = E and Re{(q(xo) — 20) p(x0)} > 0,
where the overbar denotes complex conjugate.

Proof. Let D;={(x,z) € A x C|z € h*(x) and |g(x) — z| = E}. Lemma 1.4
asserts that D, # <. We assume that the theorem is false; that is, that there
exists a p € P such that for every (x,z) € D, one has

Re{(g(x) — z) p(x)} < O.

(Clearly p(x)s£0.) We show, first, that there exists a positive number e such
that for all (x,z) € D,, one actually has

Re{(g(x) — 2) p(x)} < —2¢ <O.
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Let {(x,,z,)> be a sequence in D, such that

limRe{(4(x,) — z)p(en)} = sup Re{(q(x) —2)p(x)}.

n->00 (%,2)eDq

Since A is compact, we can assume without loss that lim,, x,=7n€ 4.
Since F is a uniformly bounded family of functions, the sequence {z,> is
bounded, and hence we can further assume without loss that lim,,,_z,= & ¢ C.
Thus, by Lemmas 1.1 and 1.2, one has ¢ € [#*(9)]* = h*(y). Further, since
for 8 > 0 and # sufficiently large,

0< ”q(xn)—znl - IQ(W)“SH
<§%]q(xn)—zn—Q(ﬂ)+fl +9
<8+lim|g(x,) —g(n)| + lim [§ —z,| =3,

one has that
E=1lim lq(xn) - an = Iq(n) - fl

n-»00

Thus, (1,€) € D,. Since
lim Re{((x,) — z,) p(xa)} = Re{(a(m) — ) p@n)},

it suffices to define € by e = —4Re{(g(n) — E)p(n)}-
We now show that for A (> 0) sufficiently small, one has

supli(g + Ap) —fll < supllg — fll = E,
FEF SfeF

which contradicts the definition of ¢; i.e., the inequality contradicts the fact
that ¢ is the best approximation to F. By Lemma 1.3, one has

sup (g + Ap) —fll =sup sup [(g(x) + Ap(x)) —zl,
feF xed zeh*(x)
so it suffices to show that if A > 0 is small enough, then
sup sup [(g(x) +Ap(x)) — 2| < E.

We argue, first, that there exists an open set G < 4 x C such that G> D,,
and such that if (x,z) € G, x € 4, z € A*(x), then

Re{(g(x) — 2)p(x)} < —<.

Since Re{(g(x) — z)p(x)} is a continuous real-valued function on 4 x C, it
suffices to let

G ={(x,2) € 4 x C|Re{(q(x) — 2)p(x)} < —<}.
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Clearly, G is an open set in 4 x C (G is an inverse image of the set of real
numbers {y € R|y <—e}) and G2 D,.

Now, if B=max,.,|p(x)| (>0), and if 0 < A < ¢/B?, then for (x,2) € G,
x € A, z € h*(x), one has

(@) + Ap(x)) — z|? = |g(x) — z]* + 2XRe {(g(x) — 2) p()} + A% p(x)
< E?2—2Xe+ A2 B2
=E*— Me+ (e = AB?)) < E? — Ae.

2

(In particular, 0 < E? — Je, a fact which will be used later.)
Now let G¢ denote the complement, in 4 x C, of the set G. We show that
there exists a positive number, §, such that if (x,z) € G°, x € 4, z € h*(x), then

lg(x)—z| < E-38.

Lemma 1.3 ensures that |g(x) — z| < E, for all pairs (x,z), x € 4, z € k*{(x).
Thus, if there exists no such 3§, then there exists a sequence <{(x,,z,)> < G%,
X, €A, z, € B¥(x,) (n=1,2,...) such that lim,, |g(x,) — z,| = E. Since 4 is
compact, we can assume without loss, that lim, , x, =%, € 4. Further, since
{z,»> is a bounded sequence in C, we can assume without loss, that lim,. z, =
¢, € C. By Lemmas 1.1 and 1.2, ¢, € [A*(n,)]* = #*(x;). Thus, by a continuity
argument used above,

E=lim|q(x) -z, = lg(m) - &,

and hence (»;,&,) € D,. But this contradicts the fact that G° is a closed set
whose complement contains D,. Thus, there exists a § > O such thatif (x,z)e G%,
x € A, z € h*(x), then

lg(x) —z| < E~ 8.
And hence, if 0 < A < 8/2B, then
(g () + Ap(x)) — 2| < q(x) — 2| + Al p(x))|

<E—8+AB
8
We have shown that for x € 4, z € h*(x), 0 < A < min{e/B?,8/2B}, one has

(g (x) + Ap(x)) — z| < max {(Ez — )2, E - 2} <E.
Hence,
sup sup |(g(x) + Ap(x)) —z| < E.

xed zeh*(x)

This completes the proof of Theorem 2.1.
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THEOREM 2.2. Let g € P be such that
inf sup|p — f | =suplig — fll = E,
pPEP feF SJeF
and define the set D, < A x C by
D,={(x,z) € A x C|z € h*(x) and |q(x) — z| = E}.
If for every two points in D, of the form (x,z) and (x,2’), one has

Re{(g(x) —2)(g(x) —2)} >0,
then q is unique; i.e., if g, € P and supscriq, — f 1| = E, then g, = q.

(The condition Re{(g(x) — z)(g(x) — z’)} > O can be interpreted geometrically
to mean that “the angle” between the two straight lines determined by the
pairs (g(x),z) and (g(x),2’) is, in absolute value, less than =/2.)

Proof. If E=0, then |lg — f| = 0 for every f € F; but this is possible if and
only if F consists of exactly one element, f, and /= q. In this case, g is trivially
unique. In what follows, we assume E > 0.

We begin by showing that the number of points (x,z) € D, which have
distinct first coordinates is at least N. Assuming that this is not the case, we
let x; (i=1,...,m < N) be those distinct points of A for which there exist
zye h*(x;) (i=1,...,m) such that (x,z;)e D, Let peP be such that
p(x;) =—(gq(x;) — z;), where z; is an element of 4*(x;) chosen arbitrarily, but
such that (x;,z,) e D, (i=1,...,m). Then fori= 1, ..., m, one has

Re{(q(x;) — z) p(x,)} = —lg(x;) — z|* = —E? <0.
If for some 7, 1 < i< m, there exist two points z; and z;’, both belonging to
h*(x;), such that both (x;,2;) and (x;,2;") belong to D, then the hypothesis of
the theorem ensures that
Re{(q(x)) — z;") p(x))} = —Re{(q(x;) — ') (q(x;) — z)} < 0.

Thus, under the assumption that m < N, there exists an element p € P such
that

Re{(q(x) — z)p(x)} <0

for all (x,z) € D,, which violates the conclusion of Theorem 2.1. One concludes
that m > N.
Now we assume that for some g; € P, one has

sup [lg, — f1l = E.
SfeF
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Then, for all fe F one has

13g+q) —fli<ilg—fl+%lg —fl=E,
and hence
sup g +g)—fII<E.

On the other hand, from the definition of E, one has
sup [3(g +q,) — fll = E.
JeF

Thus
supiiz(¢ +41) —fli=E.
feF

By the above argument, there exist N distinct points x; € 4 {=1,...,N} and
corresponding points z; € A¥*(x,) (i=1,...,N), such that

[3q () + q1(x) — zi] = [Hg(x) — 2z + Hau (x) — 21))
—E  (i=1,...N).
But since

[3(g(x) — z) + 3aq:1(x) — 2] < Elq(x) — zi| + 3, (x) — 2
<iE+LIE=F i=1,...,N),
one must have
® lqCe) —zi| = |qu(x) —z| = E (i=1,..,N)
and
() [3a(x) —z) + Hai(x) — 2)| = 3l (x) — 2| + $au(x) — =i}

(i=1,..,N).
Equations (i) and (ii) hold if and only if
q(x;) — zi =q:(x)) — 2, @=1,...,N).

Thus, ¢ and ¢; agree on N distinct points of 4, which means g = g,. This
completes the proof of Theorem 2.2.

Remark. If A consists of at least N + 1 points, then the argument above can
be used to show that the number of points (x,z) € D, with distinct first co-
ordinates.is at least N + 1.

Theorem 2.1 has a converse which was not needed for the proof of the
uniqueness theorem but is given below for completeness.

THEOREM 2.3. If q € P is such that for every p € P there exists an ordered pair
(which may depend upon p) (x¢,2q), Xo € A, zy € h*(x) with the property that

lq(xo) — zo] = Sj}g’llq —f1
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and

Re{(q(x0) — 20) p(x0)} > 0,
then

inf sup{lp —fll=supllg—fIl.

DEP feF FEeF

Proof. Let p € P and choose (x, z9) such that
Xo € As Zp € h*(xO)s Iq('xO) - ZO[ = i'ull") ”q '_'f”’

and
Re{(g(x0) — z0) (p(x0) — g (x0))} = 0.

Then, using Lemma 1.3, one obtains
supllp —fl=supllg—f)+ (@ —ql
feF SferF

=sup sup |(g(x)—2z)+ (p(x) —q(x))|

x€d zeh*(x)
> (q(x0) — o) + (p(x0) — g (x0))|

= [lg(xo) — Zo|?* + 2 Re{(g (x0) — z0) (p(x0) — 9 (o))
+ [p(x0) — g (x0)]*1'"2

> |q(x0) — zo| = supllg — f1I.
SJeF
Thus,
inf supllp — il =supllg —f1l,
peP feF feF

which completes the proof.

SECTION 3

In this section, we examine special cases of the approximation problem
treated in Sections 1 and 2.

Case 1. In the event that F consists of one continuous complex-valued
function, f, one has

J ) = h(x) = ¥ (x).

Theorems 2.1-2.3, under the assumption that A4 consists of at least N+ 1
points, reduce to theorems of Kolmogorov [3]. In particular, the approximating
function g of Theorem 2.2, is unique.

Case 2. In the event that F consists of a finite number of continuous complex-
valued functions fi, ..., fn, one has i*(x) = h(x), x € A.
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Case 3. In the event that
(1) Fis a non-empty family of uniformly bounded real-valued functions,
(2) 9x) (1 <k < N) is a Chebychev system of continuous real-valued
functions,
(3) P consists of all functions of the form >, A.q,, A, real numbers
(I <k<N),
Theorems 2.1-2.3 remain valid.t Under the assumptions (1)~(3), the condition

Re{(g(x) — 2)(¢(x) — )} > 0,
of Theorem 2.2 reduces to
(g(x) —2)(q(x) —2z') >0,
which means that x is not a straddle point, as defined in [4]. (One actually has
(g(x) — 2)(g(x) — 2) < 0, for every two points in D, of the form (x,z), (x,z),
z#2')
It seems worthwhile to give slightly different versions of Theorems 2.1-2.3,

under the assumptions (1)~(3) of Case 3. To do this, we define two functions,
F*(x) and F~(x), by

Ffx)=inf sup supf(y), xe€4,

8>00<|x~y|<8 feF
and
F(x)=sup inf inf f(p), xeA.

0>00<|x—p|<8 feF

The function F* is upper semicontinuous and the function F~ is lower semi-
continuous. The ideas of Theorems 2.1 and 2.3 can be combined, to give the
following

TreoREM 3.1. Let F, qi(x) (1 <k < N), and P be as in (1)~(3) of Case 3, and
let g € P. A necessary and sufficient condition that
inf sup |lp — fll =sup g — f1,
peP feF feF
is that, for p € P, there exists an xy & A (xq = xo(p)) such that either
|q(x0) — F*(x0)| = suplig — /1,

and

(q(x0) — F(x0)) p(xo) = 0,
or

[q(xp) — F(x0)| = sup g — 71,

T These “real versions” of Theorems 2.1-2.3 do not appear to follow immediately as
special cases of these theorems.
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and
(g (x0) ~ F~(x)) p(x0) > 0.

The proof of this theorem can be modeled after the proofs of Theorems
2.1 and 2.3, by first using the Corollary of [6] in place of Lemma 1.3. An
analogue of Theorem 2.2 is given next.

THEOREM 3.2. Let F, g, (1 <k < N), and P be as in (1)-(3) of Case 3, and let
q € P be such that

inf supllp — f| = supllg —f1.

peP feF JeF
If, for every x € A, one has

[9() — F* )] g(x) — F~(x)] # —(3}33 lg — 1%

then q is unique; i.e., if there exists a q’ € P such that

sup llg’ — fl| =inf supllp —f1,

feF peP feF
then q' =gq.

When A is a compact interval of the real line and F consists of exactly two
functions, one an upper semicontinuous function, ' *, and one a lower semi-
continuous function, f ~, with f(x) > f ~(x), x € A, Theorem 3.2 is a special
case of Theorems 1 and 2 of [4].
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