Simultaneous Chebychev Approximation of a Set of Bounded Complex-Valued Functions

J. B. Diaz and H. W. Mclaughlin
Rensselaer Polytechnic Institute, Troy, New York 12181

Introduction

For N a fixed positive integer, we denote by A a compact metric space which contains at least N distinct points; the symbol $|x-y|$ will denote the distance between two points, $x, y \in A$. For every bounded complex-valued function, g, defined on A, the norm of g is given by $\|g\|=\sup _{x \in A}|g(x)|$ (where $|g(x)|$ denotes the absolute value of the complex number $g(x)$). For M a positive real number, we denote by $F(=F(M)$) a nonempty class of complexvalued functions defined on A, such that if $f \in F$, then $\|f\| \leqslant M$. Further, we let $q_{k}(x)(k=1, \ldots, N)$ be a Chebychev system of continuous complex-valued functions defined on A, i.e., for any choice of complex numbers $\lambda_{1}, \ldots, \lambda_{N}$ ($\sum_{k=1}^{N}\left|\lambda_{k}\right|>0$), the function $\sum_{k=1}^{N} \lambda_{k} q_{k}(x)$ vanishes at at most $N-1$ distinct points of A. This means that, given N distinct points $x_{i} \in A(1 \leqslant i \leqslant N)$, and N complex numbers $z_{i}(1 \leqslant i \leqslant N)$, there exists a unique set of complex numbers $\lambda_{k}(1 \leqslant k \leqslant N)$ such that the function $\sum_{k=1}^{N} \lambda_{k} q_{k}(x)$ takes on the value z_{i} at $x_{i}(1 \leqslant i \leqslant N)$; i.e., $\sum_{k=1}^{N} \lambda_{k} q_{k}\left(x_{i}\right)=z_{i}(1 \leqslant i \leqslant N)$ (see, e.g., [l, p. 24]). We denote by P the class of all linear combinations of q_{1}, \ldots, q_{N}, i.e., P consists of exactly those functions which are of the form $\sum_{k=1}^{N} \lambda_{k} q_{k}(x)$, $x \in A, \lambda_{k}$ complex numbers $(1 \leqslant k \leqslant N)$.

The purpose of this paper is to investigate the uniqueness of an element $q \in P$ which satisfies the equation

$$
\inf _{p \in P} \sup _{f \in \mathcal{F}}\|p-f\|=\sup _{f \in \mathcal{F}}\|q-f\| .
$$

We think of q as being an element of P which best approximates the family F. Special cases of this problem were investigated by Tonelli [2] and later by Kolmogorov [3]. In Kolmogorov's problem, F consisted of one continuous complex-valued function, defined on a compact set which contained at least $N+1$ distinct points. And in Tonelli's problem, F consisted of one continuous complex-valued function, defined on a compact subset of the complex plane, with $q_{k}(x)=x^{k-1}(1 \leqslant k \leqslant N)$, x complex. More recently, Dunham [4] studied the problem, under the assumption that P was a family of real-valued functions, unisolvent of degree N, on a compact interval of the real line. He
considered the cases: (i) F consists of one bounded real-valued function, (ii) F consists of an upper semicontinuous real-valued function, f^{+}, and a lower semicontinuous real-valued function, f^{-}, with $f^{+} \geqslant f^{-}$pointwise, and (iii) F consists of a finite number of continuous real-valued functions.

In Section 1 we treat the problem of existence of an element of P which best approximates F. In Section 2 we state a uniqueness theorem, which is the main theorem of the paper. The approach we have taken hinges on Lemma 1.3. The idea expressed in this lemma was contained in a private communication to J. B. Diaz, from P. Frederickson, dated September 1, 1968. Finally, in Section 3 we investigate special cases of the theorems of Section 2.

Section 1

Theorem 1.1. There exists an element $q \in P$ such that

$$
\inf _{p \in P} \sup _{f \in F}\|p-f\|=\sup _{f \in F}\|q-f\| .
$$

Proof. Since $\|f\| \leqslant M$, one has $\inf _{p \in P} \sup _{f \in F}\|p-f\|<\infty$. Let $\left\langle p_{n}\right\rangle$ be a sequence in P such that

$$
\lim _{n \rightarrow \infty}\left[\sup _{f \in F}\left\|p_{n}-f\right\|-\inf _{p \in P} \sup _{f \in F}\|p-f\|\right]=0
$$

For each n and every $f \in F$ one has

$$
\begin{aligned}
\left\|p_{n}\right\| \leqslant\left\|p_{n}-f\right\|+\|f\| & \leqslant \sup _{f \in F}\left\|p_{n}-f\right\|+M \\
& =\inf _{p \in P} \sup _{f \in F}\|p-f\|+\left[\sup _{f \in F}\left\|p_{n}-f\right\|-\inf _{p \in P} \sup _{f \in F}\|p-f\|\right]+M .
\end{aligned}
$$

Since the term in brackets tends to zero as n tends to infinity, the sequence $\left\langle p_{\boldsymbol{n}}\right\rangle$ is uniformly bounded. Thus, $\left\langle p_{n}\right\rangle$ contains a subsequence which converges to an element of P (see, e.g., [1, p. 16]). Without loss, we assume that there exists an element $q \in P$ such that $\lim _{n \rightarrow \infty}\left\|p_{n}-q\right\|=0$. Further, for each n,

$$
\begin{aligned}
0 & \leqslant \sup _{f \in F}\|q-f\|-\inf _{p \in P} \sup _{f \in F}\|p-f\| \\
& \leqslant \sup _{f \in F}\left[\left\|p_{n}-f\right\|+\left\|q-p_{n}\right\|\right]-\inf _{p \in P} \sup _{f \in F}\|p-f\| \\
& =\left[\sup _{f \in F}\left\|p_{n}-f\right\|-\inf _{p \in P} \sup _{f \in F}\|p-f\|\right]+\left\|q-p_{n}\right\| .
\end{aligned}
$$

Since the term in brackets tends to zero as n approaches infinity, and since $\lim _{n \rightarrow \infty}\left\|q-p_{n}\right\|=0$, one concludes that

$$
\sup _{f \in F}\|q-f\|=\inf _{p \in P} \sup _{f \in F}\|p-f\| .
$$

This completes the proof of the theorem.

Next, we make two definitions. Letting C denote the complex plane, we define the set-valued functions $h(x)$ and $h^{*}(x)$ by

$$
h(x)=\{z \in C \mid f(x)=z, f \in F\}, \quad x \in A
$$

and

$$
h^{*}(x)=\bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0}, \quad x \in A,
$$

where the superscript, 0 , denotes closure in C. (As defined above, h^{*} is an upper semicontinuous set-valued function; see, e.g., [5, p. 148].)

The next two lemmas are used repeatedly in what follows.

Lemma 1.1. Let $x \in A$. Then $z \in h^{*}(x)$ if and only if there exists a sequence of ordered pairs $\left\langle\left(x_{n}, z_{n}\right)\right\rangle$ such that (1) $\left\langle x_{n}\right\rangle \subset A$, (2) $\lim _{n \rightarrow \infty} x_{n}=x$, (3) $z_{n} \in h\left(x_{n}\right)$ ($n=1,2, \ldots$), and (4) $\lim _{n \rightarrow \infty} z_{n}=z$.

Proof. Suppose, first, that a sequence $\left\langle\left(x_{n}, z_{n}\right)\right\rangle$ satisfying (1)-(4) exists. Then for $\epsilon>0$ there exists a positive integer N such that, for $n>N$, one has

$$
\text { (i) }\left|x-x_{n}\right|<\epsilon \quad \text { and } \quad \text { (ii) } \quad z_{n} \in h\left(x_{n}\right) \subset \bigcup_{|x-y|<\epsilon} h(y) \text {. }
$$

Thus, since $\lim _{n \rightarrow \infty} z_{n}=z$, one has

$$
z \in\left(\bigcup_{|x-y|<\varepsilon} h(y)\right)^{0}
$$

But $\epsilon>0$ was arbitrarily chosen, which means that

$$
z \in \bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0} ;
$$

i.e., $z \in h^{*}(x)$.

Conversely, if

$$
z \in \bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0}, \quad \text { then } z \in\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0}
$$

for all $\epsilon>0$. In particular, for each positive integer n,

$$
z \in\left(\bigcup_{|x-y|<1 / n} h(y)\right)^{0}
$$

Thus, there exists an ordered pair $\left(x_{n}, z_{n}\right)$ such that $x_{n} \in A,\left|x-x_{n}\right|<1 / n$, $z_{n} \in h\left(x_{n}\right)$, and $\left|z-z_{n}\right|<1 / n$. Hence, $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} z_{n}=z$. This completes the proof of Lemma 1.1.

Lemma 1.2. For each $x \in A, h^{*}(x)=\left[h^{*}(x)\right]^{*}$; i.e.,

$$
\bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0}=\bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h^{*}(y)\right)^{0}, \quad x \in A
$$

Proof. Since $h(y) \subset h^{*}(y)$ for all $y \in A$, it follows that for all $\epsilon>0$, one has

$$
\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0} \subset\left(\bigcup_{|x-y|<\epsilon} h^{*}(y)\right)^{0}, \quad x \in A
$$

and hence

$$
\bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0} \subset \bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h^{*}(y)\right)^{0}, \quad x \in A
$$

It remains to show that the inclusion sign can be reversed. Let $x \in A$ and let

$$
z \in \bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h^{*}(y)\right)^{0}
$$

To show that

$$
z \in \bigcap_{\epsilon>0}\left(\bigcup_{|x-y|<\epsilon} h(y)\right)^{0},
$$

it suffices, by Lemma 1.1, to show that there exists a sequence of ordered pairs $\left\langle\left(x_{n}, z_{n}\right)\right\rangle$ such that (1) $\left\langle x_{n}\right\rangle \subset A$, (2) $\lim _{n \rightarrow \infty} x_{n}=x$, (3) $z_{n} \in h\left(x_{n}\right)(n=1,2, \ldots)$, and (4) $\lim _{n \rightarrow \infty} z_{n}=z$.

By Lemma 1.1 there exists a sequence of ordered pairs $\left\langle\left(y_{n}, \xi_{n}\right)\right\rangle$ such that (1) $\left\langle y_{n}\right\rangle \subset A$, (2) $\lim _{n \rightarrow \infty} y_{n}=x$, (3) $\xi_{n} \in h^{*}\left(y_{n}\right)\left(n=1,2, \ldots\right.$), and (4) $\lim _{n \rightarrow \infty} \xi_{n}=z$. Since $\xi_{n} \in h^{*}\left(y_{n}\right)(n=1,2, \ldots)$, it follows by Lemma 1.1 again that there exists a sequence of ordered pairs $\left\langle\left(x_{n j}, z_{n j}\right)\right\rangle_{j}(n=1,2, \ldots)$ such that (1) $\left\langle x_{n j}\right\rangle_{j} \subset A$, (2) $\lim _{j \rightarrow \infty} x_{n j}=y_{n} \quad(n=1,2, \ldots)$, (3) $z_{n j} \in h\left(x_{n j}\right) \quad(n, j=1,2, \ldots)$, and (4) $\lim _{j \rightarrow \infty} z_{n j}=\xi_{n}(n=1,2, \ldots)$. Without loss (by choosing a subsequence and relabeling, if necessary) we can assume that $\left|y_{n}-x_{n n}\right|<1 / n$ and $\left|\xi_{n}-z_{n n}\right|<1 / n$ ($n=1,2, \ldots$). Now we define a new sequence of ordered pairs, by $\left(x_{n}, z_{n}\right)=$ $\left(x_{n n}, z_{n n}\right)(n=1,2, \ldots)$. Then, $\left\langle x_{n}\right\rangle \subset A, z_{n} \in h\left(x_{n}\right)(n=1,2, \ldots)$, and since

$$
\left|x-x_{n}\right| \leqslant\left|x-y_{n}\right|+\left|y_{n}-x_{n}\right|
$$

and

$$
\left|z-z_{n}\right| \leqslant\left|z-\xi_{n}\right|+\left|\xi_{n}-z_{n}\right| \quad(n=1,2, \ldots),
$$

it follows that

$$
\lim _{n \rightarrow \infty} x_{n}=x
$$

and

$$
\lim _{n \rightarrow \infty} z_{n}=z
$$

This completes the proof of Lemma 1.2.

Remark. We note that if A and C are metric spaces and F is a family of functions from A into the set of all subsets of C, then both Lemmas 1.1 and 1.2 remain valid.

Lemma 1.3. If $p \in P$, then

$$
\sup _{f \in F}\|p-f\|=\sup _{x \in A} \sup _{z \in h^{*}(x)}|p(x)-z| .
$$

Proof. Since $h^{*}(x) \supset h(x), x \in A$, it follows that for each $x \in A$ and each $f \in F$, one has

$$
\begin{aligned}
|p(x)-f(x)| & \leqslant \sup _{z \in h(x)}|p(x)-z| \leqslant \sup _{z \in h^{*}(x)}|p(x)-z| \\
& \leqslant \sup _{x \in A} \sup _{z \in h^{*}(x)}|p(x)-z| .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sup _{f \in F}\|p-f\| & =\sup _{f \in \mathcal{F}} \sup _{x \in A}|p(x)-f(x)| \\
& \leqslant \sup _{x \in A} \sup _{z \in h^{*}(x)}|p(x)-z| .
\end{aligned}
$$

It remains to show that the inequality can be reversed. We choose a sequence of ordered pairs $\left\langle\left(x_{n}, z_{n}\right)\right\rangle$ such that $x_{n} \in A, z_{n} \in h^{*}\left(x_{n}\right)(n=1,2, \ldots)$ and such that

$$
\lim _{n \rightarrow \infty}\left|p\left(x_{n}\right)-z_{n}\right|=\sup _{x \in A} \sup _{z \in h^{*}(x)}|p(x)-z|
$$

Since $z_{n} \in h^{*}\left(x_{n}\right)(n=1,2, \ldots)$, it follows from Lemma 1.1 that there exists a sequence of ordered pairs $\left(\eta_{n}, \xi_{n}\right)$ such that (1) $\left\langle\eta_{n}\right\rangle \subset A$, (2) $\left|x_{n}-\eta_{n}\right|<1 / n$, (3) $\xi_{n} \in h\left(\eta_{n}\right)$, and (4) $\left|z_{n}-\xi_{n}\right|<1 / n(n=1,2, \ldots)$. Since $\xi_{n} \in h\left(\eta_{n}\right)(n=1,2, \ldots)$, there exists an element of F, call it f_{n}, such that $f_{n}\left(\eta_{n}\right)=\xi_{n}(n=1,2, \ldots)$. Thus, for $n=1,2, \ldots$, one has

$$
\begin{aligned}
\sup _{x \in A}\left|p(x)-f_{n}(x)\right| & \geqslant\left|p\left(\eta_{n}\right)-f_{n}\left(\eta_{n}\right)\right|=\left|p\left(\eta_{n}\right)-\xi_{n}\right| \\
& \geqslant\left|p\left(\eta_{n}\right)-z_{n}\right|-\left|\xi_{n}-z_{n}\right| \\
& \geqslant\left|p\left(x_{n}\right)-z_{n}\right|-\left|p\left(x_{n}\right)-p\left(\eta_{n}\right)\right|-\left|\xi_{n}-z_{n}\right|,
\end{aligned}
$$

and hence

$$
\begin{aligned}
\sup _{f \in F}\|p-f\| & =\sup _{f \in F} \sup _{x \in A}|p(x)-f(x)| \\
& \geqslant \varlimsup_{n \rightarrow \infty} \sup _{x \in A}\left|p(x)-f_{n}(x)\right| \\
& \geqslant \varlimsup_{n \rightarrow \infty}\left[\left|p\left(x_{n}\right)-z_{n}\right|-\left|p\left(x_{n}\right)-p\left(\eta_{n}\right)\right|-\left|\xi_{n}-z_{n}\right|\right]
\end{aligned}
$$

Using the facts that p is uniformly continuous on $A, \lim _{n \rightarrow \infty}\left|x_{n}-\eta_{n}\right|=0$ and $\lim _{n \rightarrow \infty}\left|\xi_{n}-z_{n}\right|=0$, one has that

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty}\left[\left|p\left(x_{n}\right)-z_{n}\right|-\left|p\left(x_{n}\right)-p\left(\eta_{n}\right)\right|-\left|\xi_{n}-z_{n}\right|\right] \\
&=\lim _{n \rightarrow \infty}\left|p\left(x_{n}\right)-z_{n}\right|=\sup _{x \in A} \sup _{z \in h^{*}(x)}|p(x)-z|
\end{aligned}
$$

This completes the proof of Lemma 1.3.

Remark. We note that Lemma 1.3 remains valid under the assumptions that A and C are metric spaces, F is a family of functions from A into the set of all subsets of C, and $p(x)$ is a uniformly continuous function from A into C. Under these hypotheses, one must admit the possibility that the conclusion of the lemma takes the form $\infty=\infty$.

For $p \in P$, define a set $D_{p} \subset A \times C$ by

$$
D_{p}=\left\{(x, z) \in A \times C \mid z \in h^{*}(x) \quad \text { and } \quad|p(x)-z|=\sup _{f \in F}\|p-f\|\right\}
$$

Thus, the set D_{p} may depend upon the choice of $p \in P$. The next lemma asserts that for each $p \in P$, the corresponding set D_{p} is nonempty.

Lemma 1.4. Let $p \in P$, and let D_{p} be the corresponding set in $A \times C$, as defined above. Then $D_{p} \neq \varnothing$.

Proof. Let $x \in A$. Since $h^{*}(x)$ is compact, there exists a point $z(x) \in h^{*}(x)$ such that

$$
\sup _{z \in h^{*}(x)}|p(x)-z|=|p(x)-\bar{z}(x)| .
$$

Let $\left\langle x_{n}\right\rangle$ be a sequence in A such that

$$
\lim _{n \rightarrow \infty}\left|p\left(x_{n}\right)-\bar{z}\left(x_{n}\right)\right|=\sup _{x \in A}|p(x)-\bar{z}(x)|
$$

Since A is compact, we can assume without loss that $\lim _{n \rightarrow \infty} x_{n}=x_{0} \in A$. Since $\bar{z}\left(x_{n}\right)$ is a bounded sequence in C, we can further assume without loss
that $\lim _{n \rightarrow \infty} \tilde{z}\left(x_{n}\right)=z_{0} \in C$. From Lemmas 1.1 and 1.2, one concludes that $z_{0} \in\left[h^{*}\left(x_{0}\right)\right]^{*}=h^{*}\left(x_{0}\right)$. Further,

$$
\begin{aligned}
0 & \leqslant \sup _{x \in A} \sup _{z \in h^{*}(x)}|p(x)-z|-\left|p\left(x_{0}\right)-z_{0}\right| \\
& =\sup _{x \in A}|p(x)-\tilde{z}(x)|-\left|p\left(x_{0}\right)-z_{0}\right| \\
& =\lim _{n \rightarrow \infty}\left[\left|p\left(x_{n}\right)-\tilde{z}\left(x_{n}\right)\right|-\left|p\left(x_{0}\right)-z_{0}\right|\right] \\
& \leqslant \overline{\lim }_{n \rightarrow \infty}\left|\left(p\left(x_{n}\right)-p\left(x_{0}\right)\right)+\left(z_{0}-z\left(x_{n}\right)\right)\right| \\
& \leqslant \lim _{n \rightarrow \infty}\left|p\left(x_{n}\right)-p\left(x_{0}\right)\right|+\lim _{n \rightarrow \infty}\left|z_{0}-\tilde{z}\left(x_{n}\right)\right|=0
\end{aligned}
$$

(where we have used the continuity of p). One concludes that

$$
\sup _{x \in A} \sup _{z \in h^{*}(x)}|p(x)-z|=\left|p\left(x_{0}\right)-z_{0}\right| .
$$

Using Lemma 1.3, it follows that

$$
\left|p\left(x_{0}\right)-z_{0}\right|=\sup _{x \in A z \sup ^{*}(x)}|p(x)-z|=\sup _{f \in F}\|p-f\| ;
$$

i.e., $\left(x_{0}, z_{0}\right) \in D_{p}$. This completes the proof of Lemma 1.4.

Section 2

Theorem 2.1 gives a characterization of an element of P which best approximates F.

Theorem 2.1. If $q \in P$ is such that

$$
\inf _{p \in P} \sup _{f \in \mathcal{F}}\|p-f\|=\sup _{f \in \mathcal{F}}\|q-f\|=E,
$$

then for every $p \in P$ there exists an ordered pair $\left(x_{0}, z_{0}\right)$ (possibly depending on $p), x_{0} \in A, z_{0} \in h^{*}\left(x_{0}\right)$, such that $\left|q\left(x_{0}\right)-z_{0}\right|=E$ and $\operatorname{Re}\left\{\left(q\left(x_{0}\right)-z_{0}\right) \overline{p\left(x_{0}\right)}\right) \geqslant 0$, where the overbar denotes complex conjugate.

Proof. Let $D_{q}=\left\{(x, z) \in A \times C \mid z \in h^{*}(x)\right.$ and $\left.|q(x)-z|=E\right\}$. Lemma 1.4 asserts that $D_{q} \neq \varnothing$. We assume that the theorem is false; that is, that there exists a $p \in P$ such that for every $(x, z) \in D_{q}$ one has

$$
\operatorname{Re}\{(q(x)-z) \overline{p(x)}\}<0 .
$$

(Clearly $p(x) \not \equiv 0$.) We show, first, that there exists a positive number ε such that for all $(x, z) \in D_{q}$, one actually has

$$
\operatorname{Re}\{(q(x)-z) \overline{p(x)}\} \leqslant-2 \varepsilon<0 .
$$

Let $\left\langle\left(x_{n}, z_{n}\right)\right\rangle$ be a sequence in D_{q} such that

$$
\lim _{n \rightarrow \infty} \operatorname{Re}\left\{\left(q\left(x_{n}\right)-z_{n}\right) \overline{p\left(x_{n}\right)}\right\}=\sup _{(x, z) \in D_{q}} \operatorname{Re}\{(q(x)-z) \overline{p(x)}\} .
$$

Since A is compact, we can assume without loss that $\lim _{n \rightarrow \infty} x_{n}=\eta \in A$. Since F is a uniformly bounded family of functions, the sequence $\left\langle z_{n}\right\rangle$ is bounded, and hence we can further assume without loss that $\lim _{n \rightarrow \infty} z_{n}=\xi \in C$. Thus, by Lemmas 1.1 and 1.2 , one has $\xi \in\left[h^{*}(\eta)\right]^{*}=h^{*}(\eta)$. Further, since for $\delta>0$ and n sufficiently large,
one has that

$$
E=\lim _{n \rightarrow \infty}\left|q\left(x_{n}\right)-z_{n}\right|=|q(\eta)-\xi| .
$$

Thus, $(\eta, \xi) \in D_{q}$. Since

$$
\lim _{n \rightarrow \infty} \operatorname{Re}\left\{\left(q\left(x_{n}\right)-z_{n}\right) \overline{p\left(x_{n}\right)}\right\}=\operatorname{Re}\{(q(\eta)-\xi) \overline{p(\eta)}\}
$$

it suffices to define ϵ by $\epsilon=-\frac{1}{2} \operatorname{Re}\{(q(\eta)-\xi) \overline{p(\eta)}\}$.
We now show that for $\lambda(>0)$ sufficiently small, one has

$$
\sup _{f \in F}\|(q+\lambda p)-f\|<\sup _{f \in F}\|q-f\|=E,
$$

which contradicts the definition of q; i.e., the inequality contradicts the fact that q is the best approximation to F. By Lemma 1.3, one has

$$
\sup _{f \in F}\|(q+\lambda p)-f\|=\sup _{x \in \boldsymbol{A}} \sup _{z \in h^{*}(x)}|(q(x)+\lambda p(x))-z|,
$$

so it suffices to show that if $\lambda>0$ is small enough, then

$$
\sup _{x \in A} \sup _{z \in h^{*}(x)}|(q(x)+\lambda p(x))-z|<E .
$$

We argue, first, that there exists an open set $G \subset A \times C$ such that $G \supset D_{q}$, and such that if $(x, z) \in G, x \in A, z \in h^{*}(x)$, then

$$
\operatorname{Re}\{(q(x)-z) \overline{p(x)}\}<-\epsilon
$$

Since $\operatorname{Re}\{(q(x)-z) \overline{p(x)}\}$ is a continuous real-valued function on $A \times C$, it suffices to let

$$
G=\{(x, z) \in A \times C \mid \operatorname{Re}\{(q(x)-z) \overline{p(x)}\}<-\epsilon\} .
$$

Clearly, G is an open set in $A \times C$ (G is an inverse image of the set of real numbers $\{y \in R \mid y<-\epsilon\}$) and $G \supset D_{q}$.

Now, if $B=\max _{x \in A}|p(x)|(>0)$, and if $0<\lambda<\epsilon / B^{2}$, then for $(x, z) \in G$, $x \in A, z \in h^{*}(x)$, one has

$$
\begin{aligned}
|(q(x)+\lambda p(x))-z|^{2} & =|q(x)-z|^{2}+2 \lambda \operatorname{Re}\{(q(x)-z) \overline{p(x)}\}+\lambda^{2}|p(x)|^{2} \\
& \leqslant E^{2}-2 \lambda \epsilon+\lambda^{2} B^{2} \\
& =E^{2}-\lambda\left(\epsilon+\left(\epsilon-\lambda B^{2}\right)\right)<E^{2}-\lambda \epsilon .
\end{aligned}
$$

(In particular, $0<E^{2}-\lambda \epsilon$, a fact which will be used later.)
Now let G^{c} denote the complement, in $A \times C$, of the set G. We show that there exists a positive number, δ, such that if $(x, z) \in G^{c}, x \in A, z \in h^{*}(x)$, then

$$
|q(x)-z|<E-\delta .
$$

Lemma 1.3 ensures that $|q(x)-z| \leqslant E$, for all pairs $(x, z), x \in A, z \in h^{*}(x)$. Thus, if there exists no such δ, then there exists a sequence $\left\langle\left(x_{n}, z_{n}\right)\right\rangle \subset G^{c}$, $x_{n} \in A, z_{n} \in h^{*}\left(x_{n}\right)(n=1,2, \ldots)$ such that $\lim _{n \rightarrow \infty}\left|q\left(x_{n}\right)-z_{n}\right|=E$. Since A is compact, we can assume without loss, that $\lim _{n \rightarrow \infty} x_{n}=\eta_{1} \in A$. Further, since $\left\langle z_{n}\right\rangle$ is a bounded sequence in C, we can assume without loss, that $\lim _{n \rightarrow \infty} z_{n}=$ $\xi_{1} \in C$. By Lemmas 1.1 and $1.2, \xi_{1} \in\left[h^{*}\left(\eta_{1}\right)\right]^{*}=h^{*}\left(\eta_{1}\right)$. Thus, by a continuity argument used above,

$$
E=\lim _{n \rightarrow \infty}\left|q\left(x_{n}\right)-z_{n}\right|=\left|q\left(\eta_{1}\right)-\xi_{1}\right|
$$

and hence $\left(\eta_{1}, \xi_{1}\right) \in D_{q}$. But this contradicts the fact that G^{c} is a closed set whose complement contains D_{q}. Thus, there exists a $\delta>0$ such that if $(x, z) \in G^{c}$, $x \in A, z \in h^{*}(x)$, then

$$
|q(x)-z|<E-\delta .
$$

And hence, if $0<\lambda<\delta / 2 B$, then

$$
\begin{aligned}
|(q(x)+\lambda p(x))-z| & \leqslant|q(x)-z|+\lambda|p(x)| \\
& <E-\delta+\lambda B \\
& <E-\frac{\delta}{2} .
\end{aligned}
$$

We have shown that for $x \in A, z \in h^{*}(x), 0<\lambda<\min \left\{\epsilon / B^{2}, \delta / 2 B\right\}$, one has

$$
|(q(x)+\lambda p(x))-z|<\max \left\{\left(E^{2}-\lambda \epsilon\right)^{1 / 2}, E-\frac{\delta}{2}\right\}<E .
$$

Hence,

$$
\sup _{x \in A} \sup _{z \in h^{*}(x)}|(q(x)+\lambda p(x))-z|<E .
$$

This completes the proof of Theorem 2.1.

Theorem 2.2. Let $q \in P$ be such that

$$
\inf _{p \in P} \sup _{f \in F}\|p-f\|=\sup _{f \in F}\|q-f\|=E
$$

and define the set $D_{q} \subset A \times C$ by

$$
D_{q}=\left\{(x, z) \in A \times C \mid z \in h^{*}(x) \text { and }|q(x)-z|=E\right\} .
$$

If for every two points in D_{q} of the form (x, z) and $\left(x, z^{\prime}\right)$, one has

$$
\operatorname{Re}\left\{(q(x)-z) \overline{\left(q(x)-z^{\prime}\right)}\right\}>0
$$

then q is unique; i.e., if $q_{1} \in P$ and $\sup _{f \in F}\left\|q_{1}-f\right\|=E$, then $q_{1}=q$.
(The condition $\left.\operatorname{Re}\left\{(q(x)-z) \overline{(q(x)}-z^{\prime}\right)\right\}>0$ can be interpreted geometrically to mean that "the angle" between the two straight lines determined by the pairs $(q(x), z)$ and $\left(q(x), z^{\prime}\right)$ is, in absolute value, less than $\pi / 2$.)

Proof. If $E=0$, then $\|q-f\|=0$ for every $f \in F$; but this is possible if and only if F consists of exactly one element, f, and $f=q$. In this case, q is trivially unique. In what follows, we assume $E>0$.

We begin by showing that the number of points $(x, z) \in D_{q}$ which have distinct first coordinates is at least N. Assuming that this is not the case, we let $x_{i}(i=1, \ldots, m<N)$ be those distinct points of A for which there exist $z_{i} \in h^{*}\left(x_{i}\right)(i=1, \ldots, m)$ such that $\left(x_{i}, z_{i}\right) \in D_{q}$. Let $p \in P$ be such that $p\left(x_{i}\right)=-\left(q\left(x_{i}\right)-z_{i}\right)$, where z_{i} is an element of $h^{*}\left(x_{i}\right)$ chosen arbitrarily, but such that $\left(x_{i}, z_{i}\right) \in D_{q}(i=1, \ldots, m)$. Then for $i=1, \ldots, m$, one has

$$
\operatorname{Re}\left\{\left(q\left(x_{i}\right)-z_{i}\right) \overline{p\left(x_{i}\right)}\right\}=-\left|q\left(x_{i}\right)-z_{i}\right|^{2}=-E^{2}<0 .
$$

If for some $i, 1 \leqslant i \leqslant m$, there exist two points z_{i} and $z_{i}{ }^{\prime}$, both belonging to $h^{*}\left(x_{i}\right)$, such that both $\left(x_{i}, z_{i}\right)$ and $\left(x_{i}, z_{i}{ }^{\prime}\right)$ belong to D_{q}, then the hypothesis of the theorem ensures that

$$
\operatorname{Re}\left\{\left(q\left(x_{i}\right)-z_{i}^{\prime}\right) \overline{p\left(x_{i}\right)}\right\}=-\operatorname{Re}\left\{\left(q\left(x_{i}\right)-z_{i}^{\prime}\right) \overline{\left(q\left(x_{i}\right)-z_{i}\right)}\right\}<0
$$

Thus, under the assumption that $m<N$, there exists an element $p \in P$ such that

$$
\operatorname{Re}\{(q(x)-z) \overline{p(x)}\}<0
$$

for all $(x, z) \in D_{q}$, which violates the conclusion of Theorem 2.1. One concludes that $m \geqslant N$.

Now we assume that for some $q_{1} \in P$, one has

$$
\sup _{f \in F}\left\|q_{1}-f\right\|=E
$$

Then, for all $f \in F$ one has

$$
\left\|\frac{1}{2}\left(q+q_{1}\right)-f\right\| \leqslant \frac{1}{2}\|q-f\|+\frac{1}{2}\left\|q_{1}-f\right\|=E
$$

and hence

$$
\sup _{f \in F}\left\|\frac{1}{2}\left(q+q_{1}\right)-f\right\| \leqslant E .
$$

On the other hand, from the definition of E, one has

$$
\sup _{f \in F}\left\|\frac{1}{2}\left(q+q_{1}\right)-f\right\| \geqslant E .
$$

Thus

$$
\sup _{f \in \mathcal{F}}\left\|\frac{1}{2}\left(q+q_{1}\right)-f\right\|=E .
$$

By the above argument, there exist N distinct points $x_{i} \in A(i=1, \ldots, N)$ and corresponding points $z_{i} \in h^{*}\left(x_{i}\right)(i=1, \ldots, N)$, such that

$$
\begin{aligned}
\left|\frac{1}{2}\left(q\left(x_{i}\right)+q_{1}\left(x_{i}\right)\right)-z_{i}\right| & =\left|\frac{1}{2}\left(q\left(x_{i}\right)-z_{i}\right)+\frac{1}{2}\left(q_{1}\left(x_{i}\right)-z_{i}\right)\right| \\
& =E \quad(i=1, \ldots, N) .
\end{aligned}
$$

But since

$$
\begin{aligned}
\left|\frac{1}{2}\left(q\left(x_{i}\right)-z_{i}\right)+\frac{1}{2}\left(q_{1}\left(x_{i}\right)-z_{i}\right)\right| & \leqslant \frac{1}{2}\left|q\left(x_{i}\right)-z_{i}\right|+\frac{1}{2}\left|q_{1}\left(x_{i}\right)-z_{i}\right| \\
& \leqslant \frac{1}{2} E+\frac{1}{2} E=E \quad(i=1, \ldots, N),
\end{aligned}
$$

one must have

$$
\begin{equation*}
\left|q\left(x_{i}\right)-z_{i}\right|=\left|q_{1}\left(x_{i}\right)-z_{i}\right|=E \quad(i=1, \ldots, N), \tag{i}
\end{equation*}
$$

and
(ii) $\left|\frac{1}{2}\left(q\left(x_{i}\right)-z_{i}\right)+\frac{1}{2}\left(q_{1}\left(x_{i}\right)-z_{i}\right)\right|=\frac{1}{2}\left|q\left(x_{i}\right)-z_{i}\right|+\frac{1}{2}\left|q_{1}\left(x_{i}\right)-z_{i}\right|$

$$
(i=1, \ldots, N)
$$

Equations (i) and (ii) hold if and only if

$$
q\left(x_{i}\right)-z_{i}=q_{1}\left(x_{i}\right)-z_{i} \quad(i=1, \ldots, N) .
$$

Thus, q and q_{1} agree on N distinct points of A, which means $q=q_{1}$. This completes the proof of Theorem 2.2.

Remark. If A consists of at least $N+1$ points, then the argument above can be used to show that the number of points $(x, z) \in D_{q}$ with distinct first coordinates is at least $N+1$.

Theorem 2.1 has a converse which was not needed for the proof of the uniqueness theorem but is given below for completeness.

Theorem 2.3. If $q \in P$ is such that for every $p \in P$ there exists an ordered pair (which may depend upon p) $\left(x_{0}, z_{0}\right), x_{0} \in A, z_{0} \in h^{*}(x)$ with the property that

$$
\left|q\left(x_{0}\right)-z_{0}\right|=\sup _{f \in F}\|q-f\|
$$

and

$$
\operatorname{Re}\left\{\left(q\left(x_{0}\right)-z_{0}\right) \overline{p\left(x_{0}\right)}\right\} \geqslant 0,
$$

then

$$
\inf _{p \in P} \sup _{f \in F}\|p-f\|=\sup _{f \in F}\|q-f\| .
$$

Proof. Let $p \in P$ and choose $\left(x_{0}, z_{0}\right)$ such that

$$
x_{0} \in A, \quad z_{0} \in h^{*}\left(x_{0}\right), \quad\left|q\left(x_{0}\right)-z_{0}\right|=\sup _{f \in F}\|q-f\|,
$$

and

$$
\operatorname{Re}\left\{\left(q\left(x_{0}\right)-z_{0}\right) \overline{\left(p\left(x_{0}\right)-q\left(x_{0}\right)\right)}\right\} \geqslant 0 .
$$

Then, using Lemma 1.3 , one obtains

$$
\begin{aligned}
\sup _{f \in F}\|p-f\|= & \sup _{f \in F}\|(q-f)+(p-q)\| \\
= & \sup _{x \in A} \sup _{z h^{*}(x)}|(q(x)-z)+(p(x)-q(x))| \\
\geqslant & \left|\left(q\left(x_{0}\right)-z_{0}\right)+\left(p\left(x_{0}\right)-q\left(x_{0}\right)\right)\right| \\
= & {\left[\left|q\left(x_{0}\right)-z_{0}\right|^{2}+2 \operatorname{Re}\left\{\left(q\left(x_{0}\right)-z_{0}\right) \overline{\left(p\left(x_{0}\right)-q\left(x_{0}\right)\right)}\right.\right.} \\
& \left.+\left|p\left(x_{0}\right)-q\left(x_{0}\right)\right|^{2}\right]^{1 / 2} \\
\geqslant & \left|q\left(x_{0}\right)-z_{0}\right|=\sup _{f \in F}\|q-f\| .
\end{aligned}
$$

Thus,

$$
\inf _{p \in P} \sup _{f \in F}\|p-f\|=\sup _{f \in F}\|q-f\|,
$$

which completes the proof.

Section 3

In this section, we examine special cases of the approximation problem treated in Sections 1 and 2.

Case 1. In the event that F consists of one continuous complex-valued function, f, one has

$$
f(x) \equiv h(x) \equiv h^{*}(x) .
$$

Theorems 2.1-2.3, under the assumption that A consists of at least $N+1$ points,'reduce to theorems of Kolmogorov [3]. In particular, the approximating function q of Theorem 2.2, is unique.

Case 2. In the event that F consists of a finite number of continuous complexvalued functions f_{1}, \ldots, f_{m}, one has $h^{*}(x)=h(x), x \in A$.

Case 3. In the event that
(1) F is a non-empty family of uniformly bounded real-valued functions,
(2) $q_{k}(x)(1 \leqslant k \leqslant N)$ is a Chebychev system of continuous real-valued functions,
(3) P consists of all functions of the form $\sum_{k=1}^{N} \lambda_{k} q_{k}, \lambda_{k}$ real numbers ($1 \leqslant k \leqslant N$),
Theorems 2.1-2.3 remain valid. \dagger Under the assumptions (1)-(3), the condition

$$
\operatorname{Re}\left\{(q(x)-z) \overline{\left(q(x)-z^{\prime}\right)}\right\}>0,
$$

of Theorem 2.2 reduces to

$$
(q(x)-z)\left(q(x)-z^{\prime}\right)>0,
$$

which means that x is not a straddle point, as defined in [4]. (One actually has $(q(x)-z)\left(q(x)-z^{\prime}\right)<0$, for every two points in D_{q} of the form $(x, z),\left(x, z^{\prime}\right)$, $z \neq z^{\prime}$.)
It seems worthwhile to give slightly different versions of Theorems 2.1-2.3, under the assumptions (1)-(3) of Case 3 . To do this, we define two functions, $F^{+}(x)$ and $F^{-}(x)$, by

$$
F^{+}(x)=\inf _{\delta>0} \sup _{0 \leqslant|x-y|<\delta} \sup _{f \in F} f(y), \quad x \in A,
$$

and

$$
F^{-}(x)=\sup _{\delta>0} \inf _{0 \leqslant|x-y|<\delta f \in P} \inf ^{\prime} f(y), \quad x \in A .
$$

The function F^{+}is upper semicontinuous and the function F^{-}is lower semicontinuous. The ideas of Theorems 2.1 and 2.3 can be combined, to give the following

Theorem 3.1. Let $F, q_{k}(x)(1 \leqslant k \leqslant N)$, and P be as in (1)-(3) of Case 3, and let $q \in P$. A necessary and sufficient condition that

$$
\inf _{p \in P} \sup _{f \in F}\|p-f\|=\sup _{f \in F}\|q-f\|,
$$

is that, for $p \in P$, there exists an $x_{0} \in A\left(x_{0}=x_{0}(p)\right)$ such that either

$$
\left|q\left(x_{0}\right)-F^{+}\left(x_{0}\right)\right|=\sup _{f \in F}\|q-f\|,
$$

and

$$
\left(q\left(x_{0}\right)-F^{+}\left(x_{0}\right)\right) p\left(x_{0}\right) \geqslant 0,
$$

or

$$
\left|q\left(x_{0}\right)-F^{-}\left(x_{0}\right)\right|=\sup _{f \in F}\|q-f\|
$$

[^0]and
$$
\left(q\left(x_{0}\right)-F^{-}\left(x_{0}\right)\right) p\left(x_{0}\right) \geqslant 0
$$

The proof of this theorem can be modeled after the proofs of Theorems 2.1 and 2.3, by first using the Corollary of [6] in place of Lemma 1.3. An analogue of Theorem 2.2 is given next.

Theorem 3.2. Let $F, q_{k}(1 \leqslant k \leqslant N)$, and P be as in (1)-(3) of Case 3, and let $q \in P$ be such that

$$
\inf _{p \in P} \sup _{f \in F}\|p-f\|=\sup _{f \in F}\|q-f\| .
$$

If, for every $x \in A$, one has

$$
\left[q(x)-F^{+}(x)\right]\left[q(x)-F^{-}(x)\right] \neq-\left(\sup _{f \in F}\|q-f\|\right)^{2}
$$

then q is unique; i.e., if there exists $a q^{\prime} \in P$ such that

$$
\sup _{f \in F}\left\|q^{\prime}-f\right\|=\inf _{p \in P} \sup _{f \in F}\|p-f\|
$$

then

$$
q^{\prime}=q
$$

When A is a compact interval of the real line and F consists of exactly two functions, one an upper semicontinuous function, f^{+}, and one a lower semicontinuous function, f^{-}, with $f^{+}(x) \geqslant f^{-}(x), x \in A$, Theorem 3.2 is a special case of Theorems 1 and 2 of [4].

References

1. G. G. Lorentz, "Approximation of Functions." Holt, Rinehart and Winston, New York, 1966.
2. L. Tonelli, I polinomi d'approssimazione di Tchebychev. Annali di Matematica Pura ed Applicata, Serie III. XV (1908), 47-119.
3. A. N. Kolmogorov, A remark on the polynomials of Chebychev, deviating least from a given function. Uspehi 3 (1948), 216-221 (Russian).
4. C. B. Dunham, Simultaneous Chebyshev approximation of functions on an interval. Proc. Am. Math. Soc. 18 (1967), 472-477.
5. H. Hahn, "Reelle Funktionen." Chelsea, New York, 1948.
6. J. B. Diaz and H. W. McLaughlin, Simultaneous approximation of a set of bounded real functions. Math. Comp. 23 (1969), 583-594.

[^0]: \dagger These "real versions" of Theorems 2.1-2.3 do not appear to follow immediately as special cases of these theorems.

