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INTRODUCTION

For N a fixed positive integer, we denote by A a compact metric space
which contains at least N distinct points; the symbol Ix ~ yj will denote the
distance between two points, x, YEA. For every bounded complex-valued
function, g, defined on A, the norm ofg is given by Ilgll = SUPxeA jg(x)I (where
Ig(x) I denotes the absolute value of the complex number g(x)). For M a
positive real number, we denote by F(= F(M)) a nonempty class of complex
valued functions defined on A, such that ifjE F, then Ilfll,;;; M. Further, we
let qk(X) (k = 1, .. .,N) be a Chebychev system of continuous complex-valued
functions defined on A, i.e., for any choice of complex numbers A" ... ,
C~::~I IAkj > 0), the function L:~I Akqlx) vanishes at at most N ~ 1 distinct
points of A. This means that, given N distinct points Xi E A (1 ,;;; i,;;; N), and
N complex numbers Zi (l,;;; i ,;;; N), there exists a unique set of complex
numbers Ak (1,;;; k,;;; N) such that the function L:~l Akqk(X) takes on the
value z, at Xi (1,;;; i,;;; N); i.e., L:~I Akqk(Xi) = Zi (1';;; i,;;; N) (see, e.g.,
p. 24]). We denote by P the class of a111inear combinations of qj, ... , qN,
i.e., P consists of exactly those functions which are of the form Lf=l Akqk(X),
x E A, Ak complex numbers (l ,;;; k ,;;; N).

The purpose of this paper is to investigate the uniqueness of an element
q EP which satisfies the equation

inf sup lip - fll = sup Ilq - fll.
peP feF feF

We think of q as being an element ofP which best approximates the family F.
Special cases of this problem were investigated by Tonelli [2] and later by
Kolmogorov [3]. In Kolmogorov's problem, F consisted of one continuous
complex-valued function, defined on a compact set which contained at least
N + 1 distinct points. And in Tonelli's problem, F consisted ofone continuous
complex-valued function, defined on a compact subset of the complex plane,
withqk(x) = xk-I (l ,;;; k,;;; N), X complex. More recently, Dunham [4] studied
the problem, under the assumption that P was a family of real-valued func
tions, unisolvent of degree N, on a compact interval of the real line. He
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considered the cases: (i) F consists of one bounded real-valued function,
(ii) F consists of an upper semicontinuous real-valued function, f+, and a
lower semicontinuous real-valued function, f-, with f+ > f- pointwise, and
(iii) F consists of a finite number of continuous real-valued functions.

In Section 1 we treat the problem of existence of an element ofP which best
approximates F. In Section 2 we state a uniqueness theorem, which is the
main theorem ofthe paper. The approach we have taken hinges on Lemma 1.3.
The idea expressed in this lemma was contained in a private communication
to J. B. Diaz, from P. Frederickson, dated September 1, 1968. Finally, in
Section 3 we investigate special cases of the theorems of Section 2.

SECTION 1

THEOREM 1.1. There exists an element q E P such that

inf sup lip - fll = sup Ilq - fll·
peP feF feF

Proof Since Ilfll < M, one has infpep sUPfeFllp -fll < 00. Let <Pn> be a
sequence in P such that

lim [sup IIPn - fll- inf sup lip - fll] = o.
n...,"" feF peP feF

F or each n and everyf E F one has

IIPnl1 < IIPn - fll + Ilfll < suPllPn - fll + M
feF

= inf sup lip - fll + [suPIIPn - fll- inf sup lip - fill + M.
peP feF feF peP feF

Since the term in brackets tends to zero as n tends to infinity, the sequence
<Pn> is uniformly bounded. Thus, <Pn> contains a subsequence which con
verges to an element of P (see, e.g., [1, p. 16]). Without loss, we assume that
there exists an element q E Psuch that limn...,,,,, IIPn - q II = O. Further, for each n,

0< sup Ilq - fll- inf sup lip - fll
feF peP feF

.,;; sup [IIPn - fll + Ilq - Pnlll - inf sup lip -fll
feF peP feF

= [sup IIPn - fll- inf sup lip -fill + Ilq - Pnll·
feF peP feF

Since the term in brackets tends to zero as n approaches infinity, and since
limn-->co Ilq - Pnll = 0, one concludes that

sup Ilq - fll = inf sup lip - fll.
feF peP feF

This completes the proof of the theorem.
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Next, we make two definitions. Letting C denote the complex plane, we
define the set-valued functions hex) and h*(x) by

and

hex) = {z E Clf(x) = Z,jE F},

h*(x) = n ( U h(Y))O ,
<>0 Ix-yl«

xEA,

xEA,

where the superscript, 0, denotes closure in C. (As defined above, h* is an
upper semicontinuous set-valued function; see, e.g., [5, p. 148].)

The next two lemmas are used repeatedly in what follows.

LEMMA 1.1. Let x E A. Then Z E h*(x) ifand only if there exists a sequence of
ordered pairs «xmzn) such that (1) <xn) C A, (2) limn...cox" = x, (3) Zn E h(xn)

(n = 1,2, ...), and (4) lim"...cozn = z.

Proof Suppose, first, that a sequence «xmzn) satisfying (1)-(4) exists.
Then for € > 0 there exists a positive integer N such that, for n > N, one has

and (ii) Zn E hex,,) C U hey).
Ix-y!«

Thus, since limn...co z" = z, one has

Z E ( U h(Y))O .
Ix-YI«

But € > 0 was arbitrarily chosen, which means that

( )

0

ZE n U hey) ;
<>0 Ix-YI«

i.e., Z E h*(x).
Conversely, if

( )

0

ZE n U hey) ,
<>0 Ix-yJ«

then Z E ( U h(Y))O
Ix-y I< <

for all € > O. In particular, for each positive integer n,

( )

0

ZE U hey) .
Ix-yl<l/n

Thus, there exists an ordered pair (xmzn) such that x" E A, Ix - xnl < lin,
Zn E h(xn), and Iz - znl < lin. Hence, limn...coxn = x and limn...cozn= z. This
completes the proof of Lemma 1.1.
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LEMMA 1.2. For each x E A, h*(x) = [h*(x)]*; i.e.,

( )0 ( )0n U hey) = n U h*(y) ,
• >0 Ix-YI<. .>0 Ix-yj<.

XEA.

Proof Since hey) C h*(y) for all YEA, it follows that for all € > 0, one has

and hence

( )0 ( )0U hey) c U h*(y) ,
Ix-YI<. Ix-YI<€

XEA,

.C'o C~<.h(y)r cDo C_~<.h*(y)r, XEA.

It remains to show that the inclusion sign can be reversed. Let x E A and let

( )

0

ZE n U h*(y) .
€>o Ix-yl<.

To show that

( )

0

ZE n U hey) ,
.>0 Ix-YI<.

it suffices, by Lemma 1.1, to show that there exists a sequence of ordered pairs
<(XmZn)>such that (1) <Xn>C A, (2) 1imn-->co Xn= x, (3) Zn E h(xn) (n = 1,2, ...),
and (4) limn->cozn = z.

By Lemma 1.1 there exists a sequence of ordered pairs «Ymgn» such that
(1) <Yn> C A, (2) 1imn-->co Yn = x, (3) gn E h*(Yn)(n = 1,2, ...), and (4) limn->cogn=z,
Since gn E h*(Yn) (n = 1,2, ...), it follows by Lemma 1.1 again that there exists
a sequence of ordered pairs «xnj,znJ>j (n = 1,2, ...) such that (1) <xn)j C A,
(2) limj-->coxnj=Yn (n=1,2, ...), (3) znjEh(xnj) (n,j=1,2, ...), and (4)
1imj-->coznj = gn (n = 1,2, ...). Without loss (by choosing a subsequence and
relabeling, ifnecessary)we can assume that IYn - xnnl < lin and Ign - znnl < lin
(n = 1,2, ...). Now we define a new sequence of ordered pairs, by (xmzn) =
(xnmznn) (n = 1,2, ...). Then, <xn>C A, Zn E h(xn) (n = 1,2, ...), and since

and

(n= 1,2, ...),

it follows that

limxn = x,
n->co
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and

limzn = Z.
n....co

This completes the proof of Lemma 1.2.

423

Remark. We note that if A and C are metric spaces and F is a family of
functions from A into the set of all subsets of C, then both Lemmas 1.1 and
1.2 remain valid.

LEMMA 1.3. Ifp EP, then

sup lip - fll = sup sup Ip(x) - zi.
fEF XEA ZEh*(x)

Proof Since h*(x)::;) hex), x E A, it follows that for each x E A and each
f E F, one has

Ip(x) - f(x) I< sup Ip(x) - zi < sup Ip(x) - zj
ZEh(x) ZEh*(x)

< sup sup lp(x) - zi.
XEA ZEh*(x)

Thus,

sup lip - fll = sup sup Ip(x) - f(x)1
fEF fEF XEA

< sup sup Ip(x) - zl.
XEA ZEh*(x)

It remains to show that the inequality can be reversed. We choose a sequence
of ordered pairs «xmzn» such that Xn E A, Zn E h*(xn) (n = 1,2, ...) and such
that

lim Ip(xn) - znl = sup sup Ip(x) - zl·
n....co XEA ZEh*(x)

Since Zn E h*(xn) (n = 1,2, ...), it follows from Lemma 1.1 that there exists a
sequence of ordered pairs ('Y)mgn) such that (1) <1')n) c A, (2) IXn- 1')nl <
(3) gn E h(7]n), and (4) IZn - gnl < lin (n = 1,2, .. .). Since g" E h('Y)n) (n = 1,2, ..
there exists an element of F, call itf", such thatfn('Y)n) = g" (n = 1,2, ...). Thus,
for n = 1,2, .. 0' one has

> IP(7]n) - znl-Ign - zn[

> Ip(xn) - znl-Ip(xn) - P('Y)n) I -Ig" - znl,
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and hence

DIAZ AND MCLAUGHLIN

sup lip -III = sup sup Ip(x) - I (X) I
feF feF xeA

;;;;. lim sup Ip(x) -.fn(x)/
n~oo XEA

Using the facts that p is uniformly continuous on A, limn-.ro IXn-1Jnl = °and
limn-.ro /gn - znl = 0, one has that

lim f1p(xn) - znl-Ip(xn) - P(1Jn)I-lgn - znll
n-.ro

= lim Ip(xn) - znl = sup sup Ip(x) - zi.
n-.co xeA zeh*(x)

This completes the proof of Lemma 1.3.

Remark. We note that Lemma 1.3 remains valid under the assumptions
that A and C are metric spaces, F is a family of functions from A into the set
ofall subsets of C, and p(x) is a uniformly continuous function from A into C.
Under these hypotheses, one must admit the possibility that the conclusion
of the lemma takes the form 00 = 00.

ForPEP, define a set D p C A x C by

Dp = {(x,z) E A x Clz E h*{x) and Ip(x) - zi = sup lip - III}.
feF

Thus, the set Dp may depend upon the choice ofpEP. The next lemma asserts
that for each PEP, the corresponding set D p is nonempty.

LEMMA 1.4. LetPEP, and let D p be the corresponding set in A x C, as defined
above. Then Dp =f. 0.

Proof Let x E A. Since h*(x) is compact, there exists a point z(x) E h*(x)
such that

sup Ip(x) - zl = Ip(x) - z(x)l·
zeh*(x)

Let <xn) be a sequence in A such that

lim Ip(xn) - z(xn)I = sup Ip(x) - z(x)l.
n.-?oo XEA

Since A is compact, we can assume without loss that limn-.roxn= Xo EA.
Since i(x-,) is a bounded sequence in C, we can further assume without loss
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that limn...",z(xn) = Zo E C. From Lemmas 1.1 and 1.2, one concludes that
Zo E [h*(xo)]* = h*(xo). Further,

0.;;; sup sup Ip(x) - zl- Ip(xo) - zoi
xeA zeh*(x)

= sup Ip(x) - z(x)I-lp(xo) - zol
xeA

n...",

(where we have used the continuity ofp). One concludes that

sup sup Ip(x) - zl = Ip(xo) - zol·
xeA zeh*(x)

Using Lemma 1.3, it follows that

ip(xo) - zol = sup sup Ip(x) - zl = sup lip - 111;
xeA zeh*(x) feF

I.e., (Xo, zo) E Dp • This completes the proof of Lemma 1.4.

SECTION 2

Theorem 2.1 gives a characterization of an element ofP which best approxi
matesF.

THEOREM 2.1. Ifq E P is such that

inf sup lip - fll = sup Ilq - 111 = E,
peP feF feF

then for every pEP there exists an ordered pair (xo, zo) (possibly depending on
p), Xo E A, Zo E h*(xo), such that Iq(xo) - zol = E and Re{(q(xo) - zo)p(xo)}·> 0,
where the overbar denotes complex conjugate.

Proof Let Dq = {(x,z) E A x Clz E h*(x) and Iq(x) - zl = E}. Lemma 1.4
asserts that D q ,! 0. We assume that the theorem is false; that is, that there
exists apE P such that for every (x,z) E Dq one has

Re{(q(x) - z)p(x)} < o.
(Clearly p(x):¢ 0.) We show, first, that there exists a positive number E such
that for all (x,z) E D q , one actually has

Re{(q(x) - z)p(x)}.;;; -2£ < O.
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Let «xmzn» be a sequence in Dq such that

lim Re{(q(xn) - zn)P(xn)} = sup Re{(q(x) - z)p(x)}.
n....:,oo (x, z)EDq

Since A is compact, we can assume without loss that limn....ooxn= 7J EA.
Since F is a uniformly bounded family of functions, the sequence (zn> is
bounded, and hence we can further assume without loss that limn....oozn= gEe.

Thus, by Lemmas 1.1 and 1.2, one has gE [h*(7J)]* = h*(7J). Further, since
for 0 > 0 and n sufficiently large,

0< Ilq(xn) - znl-lq(7J) - gil
< lim Iq(xn) - Zn - q(7J) + gl + 0

n....oo

< 0 + lim Iq(xn) - q(7J)! + lim Ig - znl = 0,
n~oo n-7OO

one has that

n....oo

Thus, (7J,g) E D q • Since

lim Re{(q(xn) - zIJ)p(xn)} = Re{(q(7J) - g}p(7J)},

it suffices to define e bye = --!-Re{(q(7J) - g}p(7J)}.
We now show that for A(> 0) sufficiently small, one has

sup II(q + Ap) - ill < sup IIq - ill = E,
fEF fEF

which contradicts the definition of q; i.e., the inequality contradicts the fact
that q is the best approximation to F. By Lemma 1.3, one has

sup lI(q + Ap) - ill = sup sup I(q(x) + Ap(x)) - zl,
fEF XEA ZEh*(x)

so it suffices to show that if A> 0 is small enough, then

sup sup I(q(x) + Ap(x)) - zi < E.
XEA ZEh*(x)

We argue, first, that there exists an open set G c A x C such that G;:) D q,

and such that if (x,z) E G, x E A, Z E h*(x), then

Re{(q(x) - z)p(x)} < -e.

Since Re{(q(x) - z)p(x)} is a continuous real-valued function on A x C, it
suffices to let

G = {(x, z) E A x C IRe{(q(x) - z)p(x)} < -e}.
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Clearly, G is an open set in A x C (G is an inverse image of the set of real
numbers {y E Rly < -E}) and G => Dq •

Now, if B = maXxEA 1p(x) 1 (> 0), and if 0 < A< E/B 2
, then for (x,z) E G,

x E A, Z Eh*(x), one has

I(q(x) + Ap(X)) - zI 2= Iq(x) - zI 2 + 2ARe{(q(x) - z)p(x)} + A2Ip(x)1 2

< E 2 _ 2AE + A2 B2

= E 2- A(E + (E - AB2)) < E2 -;\€.

(In particular, 0 < E 2
- AE, a fact which will be used later.)

Now let GC denote the complement, in A x C, of the set G. We show that
there exists a positive number, 8, such that if (x,z) E GC, x E A, Z E h*(x), then

Iq(x) - zi < E - 8.

Lemma 1.3 ensures that Iq(x) - zi < E, for all pairs (x,z), x E A, z E h*(x).
Thus, if there exists no such 8, then there exists a sequence «X/l,Z/l) c GC,
x"EA, ZnEh*(Xn) (n= 1,2, ...) such that limn--;oolq(xn)-znl =E. Since A is
compact, we can assume without loss, that lim,,--;ooxn= YJI EA. Further, since
<zn) is a bounded sequence in C, we can assume without loss, that limn--;ooz" =
~, E C. By Lemmas 1.1 and 1.2, g, E [h*('l}IW = h*('l} I)' Thus, by a continuity
argument used above,

n--;oo

and hence ('l}"gl) E Dq- But this contradicts the fact that GC is a closed set
whose complement contains D q • Thus, there exists a 8> 0 such thatif(x,z)E Ge,
x E A, Z E h*(x), then

Iq(x) - zi < E - 8.

And hence, if 0 < A< 8/2B, then

I(q(x) + Ap(x)) - zi < Iq(x) - zi + Alp(x)1
<E-8+AB

8
<E- 2:

We have shown that for x E A, Z E h*(x), 0 < A< min{E/B 2,8/2B}, one has

I(q(x) +Ap(X)) - zi < max {(E2- AE)I/2, E -~} < E.

Hence,

sup sup I(q(x) + Ap(X)) - zi < E.
xEA ZEh*(x)

This completes the proof of Theorem 2.1.
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THEOREM 2.2. Let q E P be such that

inf sup lip - fll = sup Ilq - fll = E,
PEP fEF fEF

and define the set Dq C A x C by

Dq = {(x, z) E A x C Iz E h*(x) and Iq(x) - zi = E}.

/ffor every two points in D q of the form (x,z) and (x,z'), one has

Re{(q(x) - z)(q(x) - z')} > 0,

then q is unique; i.e., ifql EP andsuPfEFllql - fll = E, thenql =q.

(The condition Re{(q(x) - z)(q(x) - z')} > °can be interpreted geometrically
to mean that "the angle" between the two straight lines determined by the
pairs (q(x),z) and (q (x), z') is, in absolute value, less than 1T/2.)

Proof If E = 0, then Ilq - fll = °for every f E F; but this is possible if and
only if F consists of exactly one element,/, andf= q. In this case, q is trivially
unique. In what follows, we assume E> 0.

We begin by showing that the number of points (x,z) E D q which have
distinct first coordinates is at least N. Assuming that this is not the case, we
let Xi (i = 1, .. .,m < N) be those distinct points of A for which there exist
Zi E h*(xi) (i = 1, . .. ,m) such that (XhZi) E Dq • Let pEP be such that
P(Xi) = -(q(Xi) - Zi), where Zi is an element of h*(xi) chosen arbitrarily, but
such that (Xi,Zi) E Dq (i = 1, . .. ,m). Then for i = 1, ..., m, one has

If for some i, 1 <; i <; m, there exist two points Zi and z;', both belonging to
h*(xi)' such that both (Xi,Zi) and (Xi'Z;') belong to Dq , then the hypothesis of
the theorem ensures that

Thus, under the assumption that m < N, there exists an element pEP such
that

Re{(q(x) - z)p(x)} < °
for all (x, z) E Dq' which violates the conclusion ofTheorem 2.1. One concludes
thatm;;;.N.

Now we assume that for some ql E P, one has

sup I!ql - fll = E.
fEF
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Then, for allfE F one has

II!-(q + ql) - fll < !-llq - fll + !-lIq, - fll = E,
and hence

sup II!-(q + ql) - fll < E.
fEF

On the other hand, from the definition of E, one has

sup ll!-(q +ql) - fll ~ E.
fEF

Thus
sup II!-(q + ql) - fll = E.
fEF

429

By the above argument, there exist N distinct points Xi E A (i = 1, ... ,N) and
corresponding points Zl E h*(Xl) (i = 1, .. .,N), such that

H(q(Xi) +ql(Xi)) - Zl/ = /t(q(Xi) - Zl) + -t(ql(Xi) - z/)I
=E (i= 1, ... ,N).

But since

l-!(q(Xi) - Zl) + !-(ql(Xl) - zl)1 < !-!q(Xi) - Zl! + !-!q\(Xl) - zil
<-!-E+!-E=E (i= 1, ... ,N),

one must have

(i)

and

(i=l, ... ,N),

(ii) It(q(Xi) - Zi) + !(ql(x/) - zi)1 = -!-lq(Xl) - z;j + -!-!ql(Xi) - z,I
(i= 1, ... ,N).

Equations (i) and (ii) hold if and only if

q(x;) - Zi = ql(Xi) - Zi (i = 1, ... , N).

Thus, q and ql agree on N distinct points of A, which means q = ql' This
completes the proof of Theorem 2.2.

Remark. If A consists of at least N + 1 points, then the argument above can
be used to show that the number of points (x,z) E Dq with distinct first co
ordinates is at least N + 1.

Theorem 2.1 has a converse which was not needed for the proof of the
uniqueness theorem but is given below for completeness.

THEOREM 2.3. Ifq E P is such that for every pEP there exists an orderedpair
(which may depend upon p) (Xo,Zo), Xo E A, Zo E h*(x) with the property that

Iq(xo) - zol = sup Ilq - fll
fEF
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inf sup lip - fll = sup Ilq - fll.
PEP fEF fEF

Proof Letp EP and choose (xo,zo) such that

Xo E A, Zo E h*(xo), Iq(xo) - zol = sup Ilq - fll,
fEF

and

Then, using Lemma 1.3, one obtains

sup lip - fll = sup lJ(q - f) + (p - q)11
fEF fEF

= sup sup I(q(x) - z) + (p(x) - q(x)) 1

XEA ZEh*(x)

> I(q(xo) - zo) + (p(xo) - q(xo)) 1

= [Iq(xo) - ZOl2 + 2 Re{(q(xo) - zo)(p(xo) - q(xo))
+ Ip(xo) - q(xo)1 2F12

> Iq(xo) - zol = sup Ilq - fll·
fEF

Thus,
inf sup lip - fll = sup Ilq - fll,
PEP fEF fEF

which completes the proof.

SECTION 3

In this section, we examine special cases of the approximation problem
treated in Sections I and 2.

Case I. In the event that F consists of one continuous complex-valued
function,!, one has

f(x) == h(x) == h*(x).

Theorems 2.1-2.3, under the assumption that A consists of at least N + 1
points,'reduce to theorems ofKolmogorov [3]. In particular, the approximating
function q of Theorem 2.2, is unique.

Case 2. In the event that F consists ofa finite number ofcontinuous complex
valued functionsfl> .. .,fm, one has h*(x) = h(x), x E A.
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xEA.

Case 3. In the event that
(1) F is a non-empty family of uniformly bounded real-valued functions,
(2) qk(X) (1,,;;; k,,;;; N) is a Chebychev system of continuous real-valued

functions,
(3) P consists of all functions of the form 2f~1 Akqk, Ak real numbers

(l,,;;;k,,;;;N),
Theorems 2.1-2.3 remain valid.t Under the assumptions (1)-(3), the condition

Re{(q(x) - z)(q(x) - z')} > 0,

of Theorem 2.2 reduces to

(q(x) - z)(q(x) - z') > 0,

which means that x is not a straddle point, as defined in [4]. (One actually has
(q(x) - z)(q(x) - z') < 0, for every two points in Dq of the form (x,z), (x,z'),
z#z'.)

It seems worthwhile to give slightly different versions of Theorems 2.1-2.3,
under the assumptions (1)-(3) of Case 3. To do this, we define two functions,
F+(x) and F-(x), by

F+(x) = inf sup sup fey), X E A,
o>oO<;;lx-yl<o fEF

and

F-(x) = sup inf inf fey),
0>00 <;; Ix-YI<o fEF

The function F+ is upper semicontinuous and the function F- is lower semi
continuous. The ideas of Theorems 2.1 and 2.3 can be combined, to give the
following

THEOREM 3.1. Let F, qk(X) (l ,,;;; k,,;;; N), and P be as in (1)-(3) of Case 3, and
let q E P. A necessary and sufficient condition that

inf sup lip -fll = sup liq - fli,
pEP fEF fEF

is that,for PEP, there exists an Xo E A (xo = xo(p)) such that either

Iq(xo) - F+(xo)! = sup Ilq - fll,
fEF

and

or
!q(xo) - F-(xo)! = sup Ilq - fli,

fEF

't These "real versions" of Theorems 2.1-2.3 do not appear to follow immediately as
special cases of these theorems.
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(q(xo) - P-(XO))p(XO);;;' O.

The proof of this theorem can be modeled after the proofs of Theorems
2.1 and 2.3, by first using the Corollary of [6] in place of Lemma 1.3. An
analogue of Theorem 2.2 is given next.

THEOREM 3.2. Let P, qk (l < k < N), and P be as in (l )-(3) ofCase 3, and let
q E P be such that

inf sup lip - fll = sup IIq - fll·
peP feF feF

lj, for every x E A, one has

[q(x) - P+(x)] [q(x) - P-(x)] i= -(sup Ilq - f11)2,
feF

then q is unique; i.e., if there exists a q' E P such that

sup Ilq' - fll = inf sup lip - fll,
feF peP feF

then q'=q.

When A is a compact interval of the real line and P consists of exactly two
functions, one an upper semicontinuous function, f +, and one a lower semi
continuous function, f-, withf+(x) ;;;.i-ex), x E A, Theorem 3.2 is a special
case of Theorems I and 2 of [4].
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